경희대학교 한의과대학 김선광 교수 연구팀이 개발한 딥러닝 기반 세포 검출 알고리즘의 작동 모식도.경희대 제공
경희대학교(총장 한균태) 한의과대학 김선광 교수 연구팀이 파킨슨병 연구의 필수인 도파민 신경세포의 수를 정확하게 측정할 수 있는 합성신경망(Convolutional neural network) 기반의 기계학습 알고리즘을 개발했다. 이 알고리즘은 도파민 신경세포를 자동으로 인식해 수를 계산한다. 이번 연구는 한의과대학 김도윤 학생(19학번)이 주저자로 참여했다.
파킨슨병은 도파민 신경세포가 감소하며 발생하는 신경계 질환이다. 전 세계적으로 1억 명이 이 병을 앓고 있다. 파킨슨병 연구를 위해서는 도파민 신경세포 수의 측정이 필수이다. 현재는 연구진이 이미지를 수작업으로 분석한다. 이는 많은 시간과 노력이 필요하고, 분석 결과에 주관성이 들어갈 수 있다.
김선광 교수 연구팀이 개발한 알고리즘은 기존의 방법보다 더 높은 정확도를 보였다. 이미지의 색상, 밝기, 대비 등 다양한 실험 조건에도 적용할 수 있다. 연구팀은 더 많은 연구진에 수혜를 위해 알고리즘을 무료로 사용할 수 있게 했다. 사용자 친화적인 그래픽 인터페이스를 제공해, 파킨슨병 연구자가 복잡한 설정 없이 도파민 신경세포의 수를 측정할 수 있다.
새로운 알고리즘은 향후 파킨슨병을 비롯한 다양한 연구에 활용할 수 있다. 김선광 교수는 “이번 연구에서 개발한 기계학습 알고리즘은 파킨슨병 연구에 한정되지 않고, 다른 신경계 질환 연구에도 활용될 수 있을 것으로 기대한다”라고 설명했다.
연구의 주저자인 김도윤 학생은 한의과대학 본과 3학년 학생으로 예과 2학년 때부터 알고리즘 개발 연구에 참여했다. 학부생의 연구를 독려하는 ‘독립심화학습’을 수강하며 관련 연구에 천착해왔다. 이번 연구에서는 딥러닝 기반 데이터 분석 알고리즘의 개발과 적용에 기여했다. 김선광 교수와 대학원 기초한의과학과 박명성 박사는 “김도윤 학생은 학부생임에도 높은 수준의 연구 역량을 보여줬다. 그의 창의성과 도전 정신을 칭찬하고 싶다”라고 말했다.
이번 연구는 한국연구재단의 지원으로 진행됐고, 연구 결과는 SCI(E) 저널인 (IF: 3.8)의 32권 3호에 게재됐다.
# 문의: 연구 관련 - 한의과대학 김선광 교수 010-7186-1707,
skkim77@khu.ac.kr
* 자료 제공 : 경희대학교
< 이 기사는 대학이 제공한 정보기사로, 한겨레의 의견과 다를 수 있습니다>